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The effects of convection and refraction dominate the heart-shaped pattern of 
jet noise. These can be corrected out to yield the small ‘basic directivity of the 
eddy noise generators. The observed quasi-ellipsoidal pattern was predicted by 
Ribner (1963, 1964) in a variant of the Lighthill theory postulating isotropic 
turbulence superposed on a mean shear flow. This had the feature of dealing 
with the joint effects of the quadrupoles without displaying them individually. 
The present paper reformulates the theory so as to calculate the relative contribu- 
tions of the different quadrupole self and cross-correlations to the sound emitted 
in a given direction. Some minor errors are corrected. 

Of the thirty-six possible quadrupole correlations only nine yield distinct non- 
vanishing contributions to the axisymmetric noise pattern of a round jet. The 
correlations contribute either C O S ~  8, cos2 8 sin2 8 or sin4 8 directional patterns, 
where 8 is the angle with the jet axis. A separation into parts called ‘self noise’ 
(from turbulence alone) and ‘shear noise’ (jointly from turbulence and mean 
flow) may be made. 

The nine self-noise patterns combine as 

A cos46(1) + A  cos2sin2 6(5  + Q ++ + 8)  + A  sin4 8(*;+%+ & + &) 

= A(cos2 8 + sin2 8)2 = A ; 

this is uniform in all directions as it must be, arising from isotropic turbulence. 
The two non-vanishing shear-noise correlation patterns combine as 

Bcos48(1) +Bcos20sin28(~) = B ( c o s ~ ~ + c o s ~ ~ ) / ~ .  

The overall ‘basic’ pattern (self noise plus shear noise) thus has the form 
A+B(cos26+~os48)j2; this is a slight change from the previous result. The 
dimensional constants A and B are of comparable magnitude; the pattern in 
any plane through the jet axis thus resembles an ellipse of modest eccentricity. 

Frequency spectra are also discussed, following the earlier work. Since the 
self noise depends quadratically on turbulent velocity components and the shear 
noise only linearly, there is a relative shift of the self noise to higher frequencies. 
This in conjunction with refraction figures in the explanation of the deeper 
pitch of jet noise radiated at  small angles to the axis. 

Finally, the predictions are shown to be compatible with recent experimental 
results. 
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1. Introduction 
Experiments on the refraction of sound by gas jets (Atvars et al. 1965; Grande 

1966) have given strong and unambiguous support for a very simple model of 
the directional pattern of jet noise. In brief, the directivity is dominated by the 
competing effects of convection and refraction. Convection wants to beam the 
sound waves downstream into a broad fan enveloping the jet, whereas refraction 
wants to bend the waves out of the jet, weakening the core. The result is a heart- 
shaped pattern. 

The effects of refraction and convection can be corrected out of measured jet 
noise patterns to yield the small ‘basic directivity’ of the eddy noise generators. 
Some recent results for this (Grande 1966) and for corresponding ‘basic spectra’ 
(MacGregor , unpublished) bear a close relation to recent theoretical results. 

The theoretical model (Ribner 1963, and in amplified form 1964) is formulated 
from Lighthill’s (1952, 1954) basic equations, but the development and some of 
the assumptions are different. One of the results is a prediction of a ‘basic 
directivity ’ pattern that is quasi-ellipsoidal in each frequency band, which is 
similar to the patterns derived from measurement. 

Another result is the decomposition of the ‘basic spectrum ’ into two primary 
spectra, one for ‘self noise’ from the turbulence alone, and the other for ‘shear 
noise’ arising jointly from the turbulence and the mean shear flow. The propor- 
tions of the two spectra vary markedly with direction, and they peak at  different 
frequencies. Taken in combination (with some assistance from the refraction 
effect), they explain the observed deeper pitch of noise radiated at small angles 
with the jet as compared with 90”. This overrides the opposite effects of Doppler 
shift. 

The Ribner model, although incorporating Lighthill’s quadrupoles pvi vj, does 
not display them individually. Instead, only their joint effects are dealt with. 
This is accomplished by use of the Proudman (1952) formalism, wherein pv: 
governs the combined effect for the x-direction of emission. The resulting 
simplicity effects a great reduction in the volume and labour of analytical work. 
The price, however, is a loss of detail, and perhaps even a loss of credibility. The 
thirty-six possible self and cross-correlations of the pvi vj do not appear separately, 
and their role is bypassed. 

The aim of the present paper is to supply this missing detail by a reversion from 
the Proudman form to the basic Lighthill formalism. The physical model, ELS in 
the earlier work, postulates isotropic turbulence superimposed on a specified 
mean shear flow. The space-time velocity correlation functions are assumed. All 
the quadrupole correlations that contribute to the axisymmetric jet noise are 
evaluated. Their respective directional patterns are combined to produce the 
joint pattern. The results are further broken down into frequency spectra. 

The final results for the directional pattern and spectra merely confirm the 
general results of Ribner (1963, 1964), with minor corrections. What is new is 
the display of the relative contributions of various self and cross-correlations to 
the sound emitted in a given direction. Also new is the comparison, in a final 
section, of the recent measurements with the earlier predictions. 
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2. Governing equations 

in the far field by a localized unsteady or turbulent flow is given by 
Lighthill (1952, 1954) has shown that the sound pressure radiated to a point x 

p(x, t )  = (anc3-1 (xixj/x3) [a2qj/at21 d3y, (1) 

( 2 )  

L 
where Tij is a quadrupole strength density, 

!& = pvavj + 7if + (7r - Cgp) sip 
that is normally dominated by the unsteady momentum flux pvuivj, e.g. in a 
turbulent jet at  ambient temperature. Here rij is the viscous compressive stress 
tensor, n is the local pressure, p the density, co the ambient speed of sound, vi the 
velocity, and = 0 or 1, as i 4 j or i = j; the symbol [ ] designates retarded 
time, i, j = 1, 2 or 3, and repeated indices are summed over. The origin of co- 
ordinates is taken within the flow. 

On retaining only pvivj in ( 2 )  the sound power x2pz/poco radiated in direction 
(6, g5) in polar co-ordinates (per unit solid angle) may be written 

where the first term under the overbar is evaluated at  y’, t‘ and the second term 
at y“, t”. The generation times t ’ ,  t” are suitably retarded relative to the reception 
time t ,  which is averaged over at  fixed t’ - t N .  Alternatively an ensemble average 
may be used. 

The product average or quadrupole correlation shown with an overbar can be 
expressed (e.g. Ribner 1962) as a function of the midpoint y and the separation 
in space and time (figure 1) 

(4) 

c07 II r .x/x (5) 

y = i(y’ + y”); r = y’ - y”; 7 = t’ - t”. 

If the observer distance x is large compared with the flow dimensions 

(Meecham & Ford 1958). A convenient transformation of (3) is then 

where 

Here p, p‘ have been approximated by the constant ambient value po and the 
a4/i3r4 operation is to be applied before insertion of relation (5) for 7. 

The summations xivi, xjvj, etc., implicit in (7), divided by x, are each merely 
the component of v in the direction of x. Thus equation (7) may be re-expressed 
in the very neat form 

P(8, 4, y) = p0(16n2c~)-1/rn a74 a 4  w~w~2dZr, ~ 

due to Proudman (1952). 

(8) 

1-2 
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The quantity P(8,$, y) is the acoustic power radiated in direction 8, $ (per 
unit solid angle) from a unit volume element at y ; it takes the form (7) when based 
on the Lighthill quadrupole formulation, and the form (8) when based on the 
Proudman formulation. The Proudman form is by far the simpler: the single 
correlation v: vk2 replaces some thirty -six quadrupole correlations vi vj v; v;. 
This simplification was exploited by Ribner (1963, 1964): see 5 7 and appendix A. 

In  what follows, the quadrupole formulation is reduced to nine basic terms 
that are evaluated explicitly. The equivalence with the corrected results of the 
Proudman formulation (appendix A) is demonstrated. 

- 

3. Inferences from axisymmetry 
The sound power emission from a round jet, being axisymmetric, possesses 

no $-dependence. There is accordingly no change in (6) on taking the $-average, 

Thus, although the emission P ( y ,  6, $) from an individual volume element of 
the jet is not in general axisymmetric, only the $-average (or axisymmetric part, 
as it were) contributes to the overall axisymmetric emission. Physically, the 
various volume elements of the jet will mutually cancel (on a time-average basis) 
all deviations from their respective $-average sound power emissions. 

The required $-average of (7) may be expressed as 

where 

(11) 

dir ( i jkl)  = (2n)-l (xgxjxkxl/x4) dq5. r 
Since x1 = xcos8, x2 = xsin6cosq5, x3 = xsinOsin$, 

it is found that dir (i jkl)  is non-zero only when ijkl are equal in pairs. The non-zero 
directional factors are 

(12) 1 
dir(lll1) = ~ 0 8 ~ 8 ,  

dir(1212) = (&)cos28sin26 = dir(1313), 

dir (2222) = (8) sin48 = dir (3333), 

dir (2323) = (4) sin46, 

together with those obtained by permutations of the indices, which do not alter 
the value. 

It is remarkable that (7) can predict a negative power emission in certain 
directions for a single quadrupole correlation when ijkZ are not equal in pairs. 
This is not a spurious effect. Instead, it points up the fact that the cross-correla- 
tions arise from the average of the square of a sum of quadrupole terms: a single 
cross-correlation by itself is physically inadmissible. Thus, negative contribu- 
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tions from one cross-correlation are compensated by positive contributions from 
auto-correlations and other cross-correlations. 

The expanded form of (10) reads, upon allowance for redundancies arising 
from permutations of the indices, 

P ( y ,  0) N 11111 C O S ~  6 + [I1212 + 11313 + + &3] 2 cos2 0 sin2 6 

+ [#I22222 + +I3333 + i h 2 3  + $I22331 sin4 0, (I3) 
where N implies the proportionality factor po( 16n2c;)-l on the right-hand side. 
Here, for example, 11212 replaces the sum of four equivalent correlation integrals 
with a weight factor of four. The complete array of weight factors is listed with 
( 15), below. 

Part of the formalism leading to (13), and (13) itself, are similar to steps in the 
work of Kotake & Okazaki (1964), which came to the author's attention after 
developing the present independent approach. However, the differences (par- 
ticularly in the later steps) exceed the similarities, and the final results are very 
divergent. 

v1v2v;v;J = u u l s  + u1u2u;u; 4, 

v1v3v;v;/ = uutu3u; + u1u3u;u; 4, 

wlvlw;v;j = u"l;2 2, 

vlvlvjv;/ = u;u;2 2, 

- 
__ 

-- 
v2v2v;v; = u;up 1, 

v3v3v;v; = u; u;z 1, 

v2v3v;v; = u2u3u;u; 4, 

vzv2v;vj, = u; u;2 2, )  

- 

' 

4. Basic quadrupole correlations 
Equation (13) completes the reduction of the directional acoustic power 

emission from unit volume to an expression involving nine basic correlation 
integrals. The next step is to set forth expressions for the correlation functions 
involved. The constituent velocities may be written, e.g. 

vi = U6,+U,, (14) 

where U is the local mean velocity which is directed along the yi-axis, and u, is 
the contribution of the turbulence, assumed locally homogeneous and isotropic 
in our model; the special symbol 8, = 1 if i = 1 and is otherwise zero. Thus, the 
cases where i, j, k or I = 1 lead to a multiplicity of terms which are dealt with in 
appendix B. A number of these contribute nothing to the noise: either they are 
constant and differentiate out, or they possess a zero integral over r because of 
the postulatedisotropy . The surviving terms contributing to the Iijk integrals (10) 
appearing in (13) are 
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where the notation 1 = signifies (following Ffowcs Williams & Maidanik 1965) 
that the right- and left-hand sides make equal contributions to the noise integral: 
terms making no contribution have been discarded from the right-hand 
side. The meaning of the designations shear noise and self noise will now be 
discussed. 

5. Shear noise 
__ 

Consider the terms like UU'u,u; in (15). For isotropic turbulence it is known 
(e.g. Batchelor 1953) that the volume integrals of ulu;, etc., over r-space must 
vanish. If, then, the mean-flow factor UU' were constant with r the cited terms 
would contribute exactly nothing to the noise integrals. The contribution will 
be non-zero only when the mean flow is non-uniform (i.e. possesses shear). The 
noise associated with such source terms is thus called shear noise. 

__ 

Jet 

x3 

X2Y Y2 X e 

Quadrupole strength \ P G V ;  

FIGURE 1. Geometry for quadiwpolo correlations in the jet noise integral. 

__ ____ 
The terms like u$u;2, u1u3u;u~, etc., in (15) contain turbulent velocity com- 

ponents only and are independent of the mean flow. The noise associated with 
such source terms may be called self noise. (Lilley 1958 introduced the phrases 
shear-amplified noise and self noise; the formalism was quite different so that 
the correspondence is rather loose.) 

We shall evaluate in this section the shear-noise contribution to the directional 
sound power P ( y ,  0) from a representative unit volume in a jet. For the shear 
noise the location y of this volume element is restricted to  lie in the annular 
turbulent mixing region of the jet, at the radius of maximum shear (cf. figure 1). 
This region has been thought (e.g. Ribner 1958; Dyer 1959) to make the major 
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contribution to the total jet noise. Following Ribner (1963, 1964) the mean flow 
correlation at  y is taken as 

(16) U ( y + r 2 / 2 )  U' (y-r2 /2)  = UU'(r)  = U(y)2e-Unr:'L2 

in the present model of jet flow. 
Equation (10) for P ( y ,  0) refers to a stationary reference frame. It will be more 

convenient, however, to employ a frame moving with the local convection speed 
U, = Mcco, in which the correlations take their simplest form. The Lighthill 
transformation (1952) allows the a4/ar4 operation in (10) to be carried out in the 
moving frame and applies a multiplicative factor (1 - M, cos t9-5 (as corrected 
by Ffowcs Williams 1960) and an exaggerated time delay. We shall reduce this 
factor to unity by allowing U, to approach zero so that (10) is formally unaltered, 
being changed only in interpretation. The effects of convection at  finite N, will 
be approximated later. With this low-speed stipulation it can be argued that the 
ratio (eddy size)/(wavelength of sound) is small compared with unity. This 
implies that the time delay is negligible throughout the volume (approximately 
the correlation volume) that makes the major contribution to the integral, so 
we may set r = 0 therein. 

We postulate that the two-point velocity correlations in (15) are factorable into 
a space factor and a time factor 

~ 

uiu;= Rik(r , r )  = Rik(r)g(T) (17) 

in the specified reference frame moving with the local convection speed U,. The 
results are somewhat sensitive to the form assumed for the non-dimensional time 
factor g(r), a matter left for discussion in appendix C. For the present g(7)  will 
be left unspecified; we shall require, however, the two derivatives 

together with g(0) = 1; wf is a characteristic radian frequency w (time scale)-l, 
such that (g)iv and (g2)iv are non-dimensional. 

The space factor in (17) is taken to be appropriate to homogeneous isotropic 
turbulence. Thus Rik(r) must have the general form (e.g. Batchelor 1953) 

Rik(r) = G[( f f hrf ') - f 'rirk/r], (19) 

(20) 

where f is some universal function of r .  In  our model of turbulence this is taken 
to be 

which has been used by Lilley (1958); L is the longitudinal macroscale. 

shear-noise integrals. The required integrals take the form 

f = e-n%21L=. , r2 = r:+ri+r& 

Equations (16) to (20) assemble all the data needed for evaluation of the 

(Iiiii)sh = 4(S)iv w!/muu'(r) Bii(r) d3r,  (21) 
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and two similar integrals (4212)gh and (11313)& by virtue of ( l o ) ,  (15) and (17) 
together with the low-speed approximation --f 0. 

The integration gives 

(Ill1l)sh = 2w;Lsu2u>cr(1 + c)-' (9)'" = 4(I1313)sh, (22) 
and (Il2,,),, vanishes. These results may be inserted into (13), when it is inter- 
preted as 

123) 

With all the (1ijkJ)sh equal to zero except (11lll)sh and (11313)sh the shear-noise 
part of (13) takes the form 

P ( y ,  O)sh (lllll),h c0s4 + 2(11313)sh cos2 8> 

P ( y ,  QSh = B(cos4 8 + g C O S ~  8 sin2 O),  j (24) 

= ~ + ( c o s ~ e +  C o S v ) ,  

where the proportionality constant po( 16n2ci)-1 has been absorbed into 

which is constant with respect to 8; its value may vary with source position y 
in the jet. 

6. Self noise 
We proceed to the evaluation of that part of P(y ,  19) arising from turbulence 

alone (free of cross-coupling with the mean flow) and labelled self noise in (23). 
The contribution of self noise to by (10) and (15), is 

under our assumptions. There are nine of these: ijlcZ= 1111, 2222, 3333; 1122, 
2233, 3311; 1212, 1313,2323. Members in each set of three are equal by isotropy. 

We further assume normal joint probability of ui and a;, from which it 
follows that ~ _ _ ~ _ _ _ _  -__  

ui ui u; u; = us ui . u; u; + ui UL . ui u; f uiu;. ui u; 

= R i j ( 0 )  Rkl(o) f Rik Rjl + RilRjk (27) 
(see e.g. Batchelor 1953). 

By virtue of the time factor g(7) in (17) the integral (26) reduces to 
I- 

for 7 = 0, upon noting that R,,(O), R,<,(O) are not 7-dependent. 

shear noise and self noise by (23), there results 
Upon evaluation of the integrals and insertion into (13), with P ( y ,  0) split into 

P ( y ,  /3)se = A[COS~ I9 + 2 cos2 I9 sin2 I!?(& + 

= A (cos2 8 + sin2 8)2 

+ & + &) 
+ sin4 I9(% +%+ & + &-)I 

= A ,  
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where 

and includes the proportionality constant po( 167r2cg)-l of (13) ; like B it is constant 
with respect to 0, but may vary with source position y in the jet. 

7. Basic broad band noise pattern; associated quadrupole correlations 
Upon adding the contributions of self noise (29) and shear noise (24), there 

results P(Y, 8)  = A + B(cos4 8 + cos28)/2, 
Self Shear 

for the total noise power from emitted unit volume at y. A and B are of comparable 
order of magnitude (appendix C). 

This is termed a 'basic' pattern, because the normally dominant effects of eddy 
convection and refraction of the sound by the mean flow are not allowed for; 
these are dealt with in a later section. 

The two parts of the directional pattern (31) are shown in figure 2. One part 
is a non-directional contribution from the self noise (turbulence alone) ; the other 
is a dipole-like contribution from the shear noise (turbulence acting on mean 
flow). The combined pattern for A = B is a quasi-ellipsoid, with the long axis 
in the direction of the jet axis. 

+ 

Self noise Shear noise Basic pattern 

FIGURE 2. Basic pattern of jet noise (before convection and refraction). The self noise is 
a superposition of nine two-lobe and four-lobe quedrupole patterns; the shear noise 
is a superposition of two patterns. 

A B(COS~B +cos2o)/2 

Precisely the same pattern (31) is obtained (but far more simply) by use of 
the Proudman formulation (8) in place of the basic Lighthill formulation (7). 
The procedure is indicated in Ribner (1963, 1964) as amended by appendix B 
herein. The earlier analysis led to 

P(Y, e, $)+o = A + B C O S w ,  (32) 

which is the basic directional pattern in a certain plane $ = 0; this was mistakenly 
taken to be the $-average patternP(y, 0). The inappropriate form (32) has figured 
in some comparisons (e.g. Grande 1966), but fortunately the difference is small. 

Let us now consider the basis for the sound pattern (31). It is clear that the 
isotropic direchivity (29), 

P ( y ,  O)Be = A = constant, 
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of the self noise is a necessary consequence of the isotropy of the turbulence. But 
it was far from clear apriori how the self and cross-correlations of the quadrupole 
strength densities (the source terms in the noise integrals) would be proportioned 
to bring this about. Let us examine this point. 

The relative contributions of the different quadrupole correlations to the 
directional factors in the self noise (32) may be discerned with the aid of (13): 

I (33) 

C O S ~  8, N 1; 

cos28sin28, N $+$+&+I. 8, 

sin4 8, 

For the C O S ~  8 term only the self correlation of the self noise part of the longitudinal 
quadrupole T,, contributes. The cos2 8 sin2 8 term depends on the self correlations 
of two lateral quadrupoles T,, and T13 and two cross-correlations (T11TL2)se, 
(Tll T;3)se of longitudinal quadrupoles, in the proportions 7 : 7 : 1 : 1. Finally, the 
sin48 term depends on the self correlations of two longitudinal quadrupoles T,, 
and T33 and one lateral quadrupole T23, and one cross-correlation (T22Ti3)se of 
longitudinal quadrupoles, in the proportions 12: 12: 7:  1. Note that the nine 
correlations cited here represent through the permutations of the indices a much 
larger number of correlations, which are not distinct. 

The right-hand sides of (33) add up to 1, 2 and 1, respectively, giving the 
pattern C O S ~  8 + 2 cos2 8 sin2 8 + sin4 8, which equals unity. Therefore, the in- 
ference that the self noise must be independent of 8 is confirmed by the detailed 
examination. 

Turning now from the self noise to the shear noise (24), we may make a similar 
interpretation. The effective quadrupole correlations (TI, T&,, (Ti3 T;3)sh con- 
tributing to the directional factors C O S ~ ~  and cos28sin28 are in the ratio 1: & 
respectively. A third quadrupole correlation (T12 T;,)sh has a zero integral or 
mean. That is, for the ~ 0 ~ 4 8  term only the self correlation of the longitudinal 
quadrupole poUu, contributes. For the cos2 8 sin2 8 only the self correlation of 
the lateral quadrupole poUu, contributes. The form of these shear-noise quadru- 
poles deserves special note; they involve a cross-coupling between the mean 
flow U and the turbulence ui. They correspond physically to a transport of mean 
flow momentum by the turbulent fluctuations. 

The reasons for the basic broadband noise pattern, 

Intensity - A + B(COS~ 8 + cos2 8) /2 ,  

may be summed up. By ‘basic’ we mean convection and refraction effects are 
excluded, as mentioned earlier. The non-directional self noise A results from the 
joint contribution of nine quadrupole correlations having C O S ~  8, cos2 8 sin2 8 or 
sin40 directionality. The proportions are such that they combine to the non- 
directional pattern. The directional shear noise, B(cos4 8 + cos2 8) /2 ,  results from 
two quadrupole correlations having C O S ~  8 and cos2 8 sin2 8 respective direc- 
tionalities. 

Thus, in the present model (taking due account of the shear in the mean flow) 
the noise pattern is contributed to by a number of quadrupoles, both longitudinal 

Self Shear 
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and lateral. No single quadrupole is dominant. The combination leads to a 
definite resultant directionality, equation (31), for the noise from unit volume in 
the mixing region of a jet. 

The cross-correlations are seen to be very small: their relative strengths are 
3 and &. Thus, the emissions can be added in the mean square with little error, 
ignoring all cross-coupling between quadrupoles. The quadrupoles behave very 
nearly as if they were statistically independent. 

8. Effects of convection and refraction 
The analysis so far has been postulated on a negligibly small flow Mach number, 

so that the effects of source convection do not appear. The result obtained for 
the basic broadband directional pattern radiated from unit volume at  y, 

P(Y,  e)  = A + ~(cos40+ cos2e)/2, (31) 

may be generalized to allow for an eddy convection speed U, = M,c, ( E. ?4/2 
in the mixing region) in the form 

q y ,  e)  = c - 5 ~ ~  +~(cos48  + c O S ~ ~ ) / ~ I ,  

C = [( 1 - N, cos 0)z + w~L2/.rrc$ = [( 1 - N, cos S)2 + a2N3 

(34) 

(35) 

Convection Basic pattern 
factor 

where 

is a refinement of Lighthill's well-known factor, 1 - N, cos 0 (Pfowcs Williams 
1963; Ribner 1962). The basis for this generalizationis developedin Ribner (1964) 
in connexion with the pattern (32). (The later developments in $ 9 may also be 
traced to this same reference.) Here wr and L are a characteristic frequency and 
scale of the turbulence (not necessarily those in the earlier analysis), and the 
equality of the two forms of (35) defines the non-dimensional parameter a. The 
empirical value 01 = 0.55 gives good agreement with experiment for turbojets 
(see $10). 

These broad- and narrow-band equations (which follow) omit the powerful 
effect of refraction of the sound by the jet mean velocity field. This dominates 
for 101 6 30" for all but the lowest frequencies (cf. figure 3). The refraction effect 
has been evaluated quantitatively by means of experiments with a pure-tone 
point source placed in an air jet (Atvars et al. 1965; Grande 1966). The result 
may be expressed as a - 

Intensity at 8" 
Intensity at  90" 

Refraction factor = 

for frequency f ,  which multiplies the narrow-band version of (34) (see below). 
Thus, experimental narrow-band sound measurements should in effect be multi- 
plied by the inverse of (36), to eliminate the refraction effect, before comparison 
with theory. 

The effects of convection and refraction are illustrated in figure 4; this shows 
the sequence as the basic pattern is modified first by convection and next by 
refraction to produce the final directional pattern of jet noise. The figure refers to 
the sound power radiated from unit volume in the mixing region, but the spatiaI 
pattern may be taken as typical for the jet as a whole. 
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FIGURE 3. Match of noise patterns to indicate refraction-dominated zone of filtered jet 
noise (M = 0.9). The pure tone pattern from an oscillator-driven point source placed in 

, filtered jet noise. the jet defines the refraction effect. - - -, pure tone; - 

Basic 
{figure 2) 

3 

~- 

Refraction 
Convection 
(P factor) 

FIGURE 4. Jet noise &s a basic pattern (not very directional), which is powerfully modifled 
by convection of the eddy sources and refraction of the sound waves by the mean flow. 
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9. Spectra and narrow band noise patterns 
The constants A and B in the basic broad band spectrum (31) radiated from 

unit volume may be decomposed into their spectral components (Ribner 1963, 
1964) 

A = /omal(f)a B = sOmbl(f)df. (37) 
Self noise Shear noise 

The spectrum ul(f) is predicted on this model to peak substantially above the 
spectrum b,(f ), because the turbulence velocities appear quadratically in the 
self-noise terms as against linearly in the shear-noise terms. 

Thus, consider a Fourier component eiot in u; this appears as ei%t in u2; the 
frequency is doubled. The spectrum as a whole is not, however, shifted to double 
frequency, because the amplitudes are differentially altered, and sum and differ- 
ence frequencies are introduced. More precisely, the spectrum is the Fourier 
cosine transform of the correlation time factor g(7) for shear noise and of g2(7) for 
self noise. For example, the form g(7) = e-*Y yields g2(7) = e-2wF, which implies 
the self-noise spectrum peak is shifted above the shear noise peak by a factor 4 2 .  
Other assumptions (see appendix C )  would yield somewhat different shifts. 

These spectra are generalized to allow for eddy convection by writing 

A, = C-5 a,(Cf) d(Cf ), B, = C-5 b,(Cf) d(Cf ) ,  s s 
where the reception frequency f now incorporates an ‘effective ’ Doppler shift 
C-l relative to the source frequency Cf. This effective Doppler shift is taken 
as the shift of the spectrum peak, which is less than the true Doppler shift 
(1  - N, cos S)-l of the constituent lines because of a spectrum distortion. The 
overall convective amplification C-5 contained in A, and B, can be seen to consist 
of an amplification C-4 plus a ‘Doppler’ shift C-l of spectral elements. These 
points are elaborated in Ribner (1964). 

If these narrow sharply peaked spectra are summed for all the radiating 
volume elements of a jet the overall spectrum is obtained. Symbolically, 

r \ 

The narrow elementary spectra al(Cf), b,(Cf) summed over in (39) and a(Cf),  
b (C f )  peak at progressively lower frequencies as the source distance from the 
nozzle increases. Thus u(Cf)  and b(Cf) cover a broad frequency band. 

To summarize, the basic broad-band directional pattern from unit volume, 

P(y ,  8) = A + B(COS~ 8 + C O S ~  8)/2, 
Selt Shear 

is effectively the integral over frequency of the narrow-band pattern (or spectral 
density for given 8) 

P(y ,  0,f) = a,(f)  + b,(f) (COS~ 8 + C O S ~  8)p .  
Self Shear 
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Allowance for eddy convection at Mach number M, generalizes this to 

P,(y, 0 , f )  = C-4[~,(Cf) +b,(Cf) ( c o s ~ ~ +  C O S ~ O ) ~ ] .  
Self Shear 

Integration over source-position y yields the narrow-band pattern (or spectral 
density for given 6 )  emitted by the jet as a whole as 

PC(0,f) = C 4 [ a ( C f )  + b(Cf)  ( C O S ~  0 + C O S ~  0)/2]. (42) 
Self Shear 

The general forms of the component spectrum functions, a(Cf) and b(Cf) ,  have 
been discussed by Ribner (1964), ba,sed on the work of Powell (1958) (‘f2 and 
f -2 laws ’). 

A simplifying assumption in the foregoing must be pointed out. In the step 
from (41) to (42) (the integration over the jet), it is implicit that the self-noise 
and shear-noise directivities derived for the mixing region apply without change 
in the developed jet. In  addition, the convection factor C is to be taken constant 
and associated with the constant convection Mach number M, N (+) q / c  along 
the annular central surface of the mixing region; the decay of M, in the developed 
jet is neglected. These assumptions are made for expediency and justified in part 
on the ground that the bulk of the noise originates from the mixing and transition 
regions. The remainder of the noise (essentially the low frequency part of the 
spectrum) originates from the developed jet and for this the assumptions are 
clearly faulty. 

We content outselves herein with attributing the directivity in the general 
form (42) to theory, with the spectral forms of a(Cf) and b(Cf) being only loosely 
specified. A closer specification cannot be made with confidence in view of the 
oversimplifications in the theory, e.g. those of the last paragraph together with 
the assumption of isotropy in the turbulence. The integrals of a(Cf) and b(Cf) 
over frequency are predicted to be of the same order, so that A N B in (31) 
(appendix C). Further, the peak of the a(Cf) spectrum (self noise) should lie sub- 
stantially above the peak of the b(Cf) spectrum (shear noise). There are various 
uncertainties here, so that the theory must remain only qualitative as to this 
spectrum shift and the relative magnitudes of A and B. 

The present viewpoint is seen to represent a relaxation of the over-restrictive 
mathematical model given in Ribner (1964), with correction of some errors 
(appendices A and C). The major features are retained but some flexibility is 
allowed as to the details. 

10. Comparison with experiment 

has been given as (34) : 
The broad band pattern (31), as modified to allow for the source convection, 

P,(y, 0) = C 5 [ A  + B(cos4 0 + cos2 @/a]. 

This refers to the sound power radiated from unit volume in the mixing region, 
but the spatial pattern may be taken as typical for the jet as a whole. This 

Convection Basic pattern 
factor 
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pattern with A = B and a (in C, (34)) taken as 0.55 for best fit is compared with 
measurements for several turbojets in figure 5, adapted from Pietrasanta (1 956) 
and Ribner (1963, 1964). The agreement is quite good over the wide range from 
8 = 40" to 180°, covering a 200-fold variation (23db) in intensity. The failure 
below 40' is due to refraction (figure 3). 

- 20 2 
FIGURE 5. Jet noise patterns for turbojets. Comparison of experiment and theory with 
A = B and a2 (in C) = 0.3. Pietrasanta: - - - , M ,  = 0.76 (533-A-20 engine); -, 
M ,  = 0.78 (J 34-WE-34 engine); ---, M ,  = 0.84 (J 48-P-8 engine). M ,  = 0.82. 
Theory: [(l -M,cos8)2+0.3M~]-it.[l +(cos4+cos28)/2]. 

The powerful convection factor C-K together with the refraction jointly 
dominate the pattern at these turbojet flow speeds. The basic directional pattern 
1 + (cod 8 + cos2 0 ) /2  accounts for only 3 db of the 23 db variation. Thus, although 
the final pattern is markedly directional, the basic pattern (which omits convec- 
tion and refraction effects) is only weakly directional. 

The narrow band pattern or directional spectrum (42) reads 

P,(O,f) = C-4[a(Cf) + b(Cf) ( C O S ~  8 + cos2 8) /2] .  

This corresponds to the passage of the broad band radiation in direction 8 through 
a filter of unit band width centred at  frequency f. The possibility of testing an 
equation of this kind (based on (32) in place of (31)) motivated the work of 
MacGregor (unpublished); he has made comparisons of the theory with spectral 
measurements on a f in .  air jet in the Institute for Aerospace Studies anechoic 
chamber. 

I am indebted to MacGregor for figures 6 and 7 herein. Figure 6 is a two-com- 
ponent spectrum obtained by fitting the theoretical model (42) to his experi- 
mental data measured at  8 = 45" and 90". We identify the a(Cf )  peak with the 
self noise and the b(Cf)  peak with shear noise. The shift of the self-noise peak well 
above the shear-noise peak is in general agreement with 1 :;e theoretical argument 
given earlier. 
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Figure 7 shows the narrow band 'basic' directional pattern at  f = 1500 Hz. The 
dashed curve is obtained from (42) with the empirical a(Cf) and b(Cf) of figure 6, 
and with F4 omitted. The solid curve is direct experimental data after correc- 
tion for refraction (Grande 1966) and for convection by multiplication by C4. 

I 

Strouhal no. CfDlU 

FIGURE 6. Two-componentel spectrum obtained by fitting theoretical equation (45) to 
experiment a t  0 = 45' and 90'. Dominance of the shear noise by low frequencies and the 
self noise by higher frequencies is shown. 

F I G ~ E  7. 'Basic' directional pattern of jet noise in narrow frequency band at 1500 c/s .  
Comparison of experiment with theory (curves of figure 6) adjusted for two-point fit. 

, a(Cf)+b(Cf)(cos40+cos20)/2; ---, experiment. Mach no. = 0.5; Cf = 1500c/s; 
(CfD)/U = 0.17. 

It is clear that (42) has been used essentially as an interpolation-extrapolation 
scheme, the two curves having been matched at 45" and 90". One can conclude, 
however, that the a(Cf) + b(Cf) ( C O S ~  8 + cos2 8)/2 form does not deviate markedly 
from the general shape f the basic experimental pattern. Similar, less distorted 
patterns were found ex1 %rimentally (with use of reduction methods more loosely 
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defined by theory) by Grande (1966); the deviation from the theoretical quasi- 
ellipsoidal pattern was noticeably less than in figure 7 .  

The theoretical predictions for spectra and directivity may also be compared 
with recent results obtained by Chu (1966) from hot-wire measurements in a jet. 

0 0.5 1 1.5 2 2.5 v 

@ (a) 0" case, shear noise f tDiU* 
+ u 
b 
m 3  

2 

1 

0 

I I I I 1 1 
0 1 2 3 4 5 

( b )  0' case, self noise f tDl ui 
FIGURE 8. Spectra of self noise and shear noise emitted from unit volume of a jet as com- 
puted by Chu (1966) from hot-wire measurements of turbuIence correlations. -, 
Fourier cosine transformation of A sech ( b ~ )  cos (c7)  ; - - - , numerical FCT of fourth deriva- 
tive cu~ve  up to third zero crossing. Shaded area, uncertainty band. 45" and 60" cases 
will have approximately the same shapes and peaks except for relative intensities. 
M ,  2 0.08. 

2 Fluid Meoh. 38 
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Chu measured in great detail the space-time correlations of turbulent velocity 
figuring in the Lighthill integral in the Proudman form (8). He was able to 
evaluate numerically a development of this integral and also its Fourier trans- 
form to obtain the sound pressure auto-correlation and spectrum. This is a major 
advance, diminished perhaps by uncertainties in the evaluation of a fourth 
derivative of an experimental curve. 

Self noise 

FIQURE 9. Broad band noise emitted from unit volume of a jet in three directions, as 
computed by Chu (1966) from hot-wire measurements of turbulence correlations. 

Chu's results are a prediction of the sound radiated from unit volume (and in 
three specific directions 0"' 45", 60') based on measurements of turbulence within 
the unit volume. The spectrum he obtained (broken into its two constituents of 
self noise and shear noise) is shown for the 8 = 0" case in figure 8. The shapes are 
quite similar to those predicted by the theoretical model (Ribner 1964, figure 16) 
for al(f). I n  this case the separation of the peaks is even greater than the one 
octave predicted from the oversimplified argument based on a single Fourier 
component, [(eiot)2 = ei20t]. 

The corresponding broad band pattern obtained by Chu is shown in figure 9. 
This is compared with the pattern (34)) 

PJY, e) = c - 5 ~ ~  + qcos4e + c o s ~ e ) / z ~ ,  

predicted herein as being emitted from unit volume, with A set equal to B. The 
agreement of the directionality is quite good. 
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Since Chu used a very low speed jet (142 ft./sec) the convection factor C5 is 
near unity, Thus the bracketed 'basic' directional pattern accounts for most 
(3 db) of the small variation between 0" and 90". Here again, the quasi-ellipsoidal 
nature of this basic pattern is evident. 

11. Concluding remarks 
Since carrying out the present analysis, the author has learned of two other 

efforts to deal quantitatively with the various quadrupole correlations: Kotake 
& Okazaki (1964) and Jones (1967). 

It is noted that Kotake & Okazaki deal in effect with the self noise only. The 
shear noise term is dropped on the basis of an order-of-magnitude estimate in 
the transition from their equation (8) to their equation (9). They seek to explain 
all of the jet noise properties, including what are now recognized as clearly 
refractive effects, in terms of the basic directivity of this self noise. 

The work of Jones resembles the present study in attempting to tabulate all 
of the self and cross-correlations contributing to the self noise and the shear 
noise. The assumptions and the analytical framework are, however, quite 
different, and the results are not readily compared. 

The present formalism may be compared in one respect with the Lighthill 
(1954) model, which suggests that the single T,, lateral quadrupole dominates 
the shear noise. In his view, ' . . .the most important term in the rate of change 
of momentum flux [?I/at(T&)] is the product of the pressure and rate of strain.. .The 
higher frequency sound from the heavily sheared mixing region close to the 
orifice of a jet is found to be of this [single lateral quadrupole] character'. The 
axisymmetric part of the associated directional pattern has a cos2 6' sin2 6 direc- 
tionality. This looks like a four-leaf clover and, even when compounded with self 
noise, bears little resemblance to the quasi-ellipsoidal pattern deduced herein, 
either from theory or experiment (figure 7). 

However, Csanady (1966) has made a case for supplementing the T12 quadru- 
pole with T,, and T13 quadrupoles in a modified Lighthill model. The details 
have been made more explicit by Krishnappa (1968). The effect of the T,, is to 
yield, with the added self noise, a fuller pattern more nearly resembling our 
quasi-ellipsoid. 

The Csanady extension, by so modifying the four-leaf-clover pattern, would 
resolve two divergent views of the dominant directional features of jet noise. 
On the earlier view, the basic pattern is a four-leaf clover that is distorted by 
convection to the shape of a butterfly. The partial resemblance at the higher 
frequencies to the observed heart-shaped pattern of jet noise is stressed. On the 
present view (Ribner 1963, 1964), convection distorts a basic quasi-ellipsoidal 
pattern; then refraction (figure 3), omitted in the earlier view, provides the cleft 
in the final heart-shaped pattern. 

This research was sponsored by the Air Force Office of Scientific Research, 
Office of Aerospace Research, United States Air Force, under AFOSR Grant 
Nr. AF-AFOSR 672-67. 
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Appendix A. Proudman formulation: correction of Ribner (1963,1964) 
The directional pattern (32) is the radiation pattern from a volume element of 

a jet evaluated in the plane Q, = 0 containing the element and the jet axis. This 
was obtained in Ribner (1963, 1964) on the basis of the very simple Proudman 
formulation (8); the result was confused with the $-average. In  what follows the 
procedure is generalized to obtain the radiation pattern in a plane through the 
jet axis making some arbitrary angle $ with the cited plane. Then this pattern 
is averaged over $ to obtain the axisymmetric pattern (31). In  addition, the 
result is generalized to depend on an arbitrary time factor g(7) in the velocity 
correlation in place of the factor e-0f171, which is mathematically unacceptable 
(appendix C) . 

Paralleling the procedures herein, but bypassing many of them, Ribner (1964) 
shows that the integral in (8) is proportional to 

2(g2)ivw?j RE(r)d3r+~(g)ivw~cos28 UU'(r )  Rll(r) d3r, (A 1) 

where u1 and the 1-axis have been chosen parallel to the vector x drawn from the 
origin to the observation point,. The proportionality factor is po(n2c;)-', which 
corrects a misprint. 

It will be necessary to re-express (A 1) relative to the present reference frame, 
in which t,he 1-axis is parallel to the mean jet flow U. Because of the assumed 
isotropy of U, R2,, in the first integral can be retained without change of form, 
since its volume integral will be unaltered. The first integral is then 

m S m  

Self-noise term = 2-4 (g2) l~  w?z-g(i@ ~ 3 .  (A 2) 

This is a constant, and is unaltered upon averaging over $. 
For the second integral in (A 1) the transformation is taken in two steps. First, 

a rotation is made through an angle 8 in the plane containing x and U to bring 
the 1-axis into alignment with U. Call this the r;, r i ,  r; frame. Next, a rotation is 
made about the 1-axis such that the new ri-axis makes an angle Q, with the 
x, U plane. Call this the r;, ri ,  rg frame. The connexion between co-ordinates in 
this and the initial r,, r2, r3 frame is 

(A 3) 1 rl = r'; cos 6 + rg sin 8 cos $ - rg sin 8 sin Q,, 
r2 = -r; sin 8+r i  cos 8 sin $ - ri cos 8sin $, 
r3 = r l  sin Q, + rg cos q5. 

These are to be inserted in R,, of (28) and (21) 
- 

Ell(r) = uf[l- (7rr2/L2) + (nr2,/L2)] e--nra/La. (A 4) 

In  doing this we drop the ", so that the final r l ,  r2, r3 frame is identified with the 
rl ,  r2, r3 frame of the present paper. The result, with the definitions 
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is Rll(r) = u"J11- s2 + s: cos2 8 + si sin2 8 cos2 # + si sin2 B sin2 $ 

+ cross-product terms] exp ( - - s: - 8:). (A 6) 

Upon combining (A 6) and (18) the second integral of (A 1) may now be 
evaluated. The cross-product terms, being odd, will integrate to zero. The integra- 
tion vields: - 

Shear-noise term = w~u2u: uL3 (cOs4 e + cos2 o sin2 B sin2 $1 (g)iv. (A 7) 
8(1+u)+ 

This reduces to equation (9.14) of Ribner (1964) in the plane $ = 0, as it should, 
when g(7) = e-@fr. 

Now, if we average over all azimuth angles # describing the orientation of the 
volume element around the jet mixing region, sin2$ averages to 4, and the 
#-average is, after reduction, 

The sum of (A2) and (AS) is equivalent to (31). 

Appendix B. Nonradiating and radiating quadrupole correlations 
The general quadrupole correlation 

vi vj 8; v; = ( us, + ui) ( USj + uj) ( u.8, + ui)  ( u'sl + u;) (B 1) 

with the notation+ 
1, i = l  Sij = SiSj, etc. 

- - - -  
upon noting that u, = uj = ui = ui = 0 by definition. The terms in $72, U ' 2  and 
U2Uf2 are constant with T and are not sources of sound; they will be eliminated 
by the a4/&-4 operation of (10). 

In  order to deal with correlations like Uujuiu~ we first postulate that uju~ui is 
factorable into a function of 7 (time delay) and a function of r (cf. (17)). Then, 
setting T = 0 after applying a4/ib4 as specified in the text, leaves (10) as merely 
a spatial integral. Next we reverse the co-ordinate transformation (4), reverting 
to the original co-ordinates y" and y" appearing in (3). Thus d3y' replaces d3y 
in (6) and d3y" replaces d3r in (7) and (10) for these correlations. The value of 

f These special symbols, although somewhat similar, are not to be confused with 
Kronecker deltas. 
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P(0, q5) will be unaltered thereby. Since U refers to point y‘, it is invariant as y’ 
is held fixed while y” is varied in performing 

p u i i  ( y t ,  y”) d3y”. 

For the assumed homogeneous isotropic turbulence this reduces to the form 

and the volume integral of the triple correlation vanishes (Batchelor 1953). 

tributing to the noise integral are contained in 
Altogether, then, those correlations (designated by the symbol = ) con- 

Of these, the correlations contributing to the net radiation are those with indices 
as selected in (12) or (13). Insertion of these values of ijkl gives the nine basic self 
and cross-correlations of (15). Permissible numbers of permutations of ijkS are 
tabulated to be used as weight factors. 

Appendix C. Relative magnitude shear noise and self noise 
From (26) and (30) we may form the ratio 

(C 1) 
B 4 4 ( 2 ( ~ )  U2 (g)iv peak shear noise 
A - (1 +a)% 2 (g2)i’ 

/--- - _ -  
self noise 

For evaluation of B / A  in the middle of the mixing region (radially) we have 
the following considerations. The turbulence level there is well known experi- 
mentally: v1/U2) N (0*28)2 at y/D = 4 according to Laurence (1956). The value 
of cr depends on the turbulence scale L;  experimentally the specification 
~(ry2jL2 = 39.0 gives a good fit of (34) to data derived from Townsend‘s (1956, 
p. 177) mixing profile. If we identify L as the longitudinal scale, the experi- 
mental data for y N 4 0  show a broad spread, e.g. 

L IY  U ul(l+ a)f 
Davies et aZ. (1963) 0.13 0.2 1 0.158 
Laurence (1956) 0.075 0.070 0.063 
Chu (1966) 0.0478 0.0284 0.0278 

TABLE 1 

The value cr = 0.45 adopted by Ribner (1963, 1964) appears to be considerably 
in error. 

For the further evaluation of B / A  in (C 1) we require the ratio 
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of fourth derivatives of the time correlation factor g(r) and its square. Since for 
k = i in (17) g(7) plays the role of an autocorrelation, it must be an even function 
and it must possess (and g2(7) as well) a non-negative Fourier cosine transform. 
It is not clear how or if these restrictions on the form of g(7) may limit the ratio 
(g)iv/(g2)iv that may be assumed. Several assumptions (with cr from table 1) and 
their consequences for the ratio B / A  are as follows: 

9(7) (g)iy/(9z)iv u B / A  Remarks 

(1) ~ X P  ( - 4 7 1 )  1 16 0.45 1.16 Ribner (1963, 1964) 

(2) exp ( - w:72) t 0.070 1.15 Gaussian correlation. Scale 

(3) exp ( -uz72 -u4474) 1/2-4 approx. 0.0284 0.84 Experimental correlation and 

TABLE 2 

from Laurence (1956) 

scale (Chu 1966) 

Chu himself obtained a value of B / A  = 2.63 from a fuller use of his experimental 
data, using considerably less restrictive assumptions than those herein; the 
value of B / A  involved the ratio, however, of two experimentally derived fourth 
derivatives and is thus open to question. 

Leaving aside Case 1 for the moment, it would seem that reasonable choices for 
g(r), with other parameters derived from experiment,? give values of B / A  
(=  peak shear noise/self noise) of the order of unity. 

The referee has pointed out that Case 1, used in the author's previous work, is 
quite invalid. The function e-of!T' possesses a cusp a t  the origin so that its de- 
rivatives are undefined there. (The computed ratio of (g)i"/(gz)iv refers instead 
to g = e-up.) But the value cr = 0.45 chosen is now seen to disagree markedly 
with experiment. By coincidence the errors are compensating: thus the pre- 
diction in Ribner (1963, 1964) that B / A  is of the order of unity appears fortui- 
tously to have been about right. 
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